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Abstract

Geometric triangulation is at the basis of the estimation ofthe 3D position of a target from a set of camera measurements.
The problem of optimal estimation (minimizing theL2 norm) of the target position from multi-view perspective projective
measurements is typically a hard problem to solve. In literature there are different types of algorithms for this purpose, based for
example on the exhaustive check of all the local minima of a proper eigenvalue problem [2], or branch-and-bound techniques
[3]. However, such methods typically become unfeasible forreal time applications when the number of cameras and targets
become large, calling for the definition of approximate procedures to solve the reconstruction problem.

In the first part of this paper, linear (fast) algorithms, computing an approximate solution to such problems, are described
and compared in simulation. Then, in the second part, a Gaussian approximation to the measurement error is used to express
the reconstruction error’s standard deviation as a function of the position of the reconstructed point. An upper bound,valid
over all the target domain, to this expression is obtained for a case of interest. Such upper bound allows to compute a number
of cameras sufficient to obtain a user defined level of position estimation accuracy.

I. I NTRODUCTION AND CAMERA MODEL

The problem of estimating the 3D coordinates of a target froma set of sensor measurements, named reconstruction
procedure, is at the basis of motion capture and localization/tracking systems. In the general framework of sensor networks,
the problem is usually solved by geometric triangulation ortrilateration of measurements [10] and similarly, in the context of
camera network systems, the reconstruction of the 3D targetlocation from the information of two cameras’ image planes can
be attained by means of geometric triangulation of measurements [2]. In particular, in this paper, we consider the case of large
scale systems, such as for example those related to marker motion capture with many subjects (that is hundreds/thousands
of markers and tens/hundreds of cameras): Nowadays, motioncapture systems are used for a wide range of applications,
going from biomedical to military, from the movie industry to the sport disciplines. On the one hand, the request of a more
and more accurate estimation of the target positions is leading to the use of large camera network systems. On the other
hand, the real time use of the system imposes stringent computational requirements.

We assume the camera model as a calibrated pinhole camera; therefore, given a point targetφ in the 3D space, the
measurement taken from cameraj corresponds to a2D position qj on its viewing sensor (i.e. on its image plane) that is
generated by the intersection of the camera’s image plane with the ray passing through the pointφ and the camera’s optical
centerOj , as shown in Fig. 1 together with the reconstruction procedure (assuming perfect measurements, i.e. infinite sensor
sensibility and no measurement noise).

Fig. 1. Projection of a 3D pointφ onto the image plane and triangulation between two cameras.Measurementqj is the projection ofφ on the image
plane of cameraj. The crossing point between two rays related to the same target seen by different cameras allows to obtain the target’s 3Dposition.

Theoretically, the reconstruction procedure could be solved by two measurements only, but the presence of measurement
and quantization noise in addition to specific alignment conditions, suggest the use of many more measurements for the
target location estimation. Actually, in large motion capture systems characterized by complex scenarios, the reconstruction
procedure must rely on several rays, in order to meet the requirements in terms of accuracy and robustness to the target
localization. Exploiting a large numberm of 2D camera measurements (3D rays), indeed:

• the visibility of the targets increase and many more targetscan be reconstructed,
• the number of ghost target (reconstructed artifacts) decreases, since the reconstruction needs to be obtained by a larger

number of 2D measurements,
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• the reconstruction error is reduced.
In detail, letφ = [x, y, z]⊤ be a 3D target to be reconstructed, thenqj = [uj, vj ]

⊤ is the measurement on the image plane
of cameraj ∈ [1, . . . ,m], given as follows:
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wherePj is the projection matrix associated tojth camera and taking into account the intrinsic and extrinsic parame-
ters [6] [1], anddj is the distance from the camera to the target plane (assumingthe focal lengthf as known and normalized
to 1). Also, let Ij be the image plane andΠj the target plane (parallel toIj and passing throughφ). In practice, being
qj a noisy measurement, its projection onΠj is φj ≈ φ, and finallymj is the unit vector along the direction fromOj to
φj . Furthermore, let̂φ = [x̂, ŷ, ẑ]⊤ be the estimated position of the target by the camera networkand q̂j = [ûj , v̂j ]

⊤ its
projection on the image plane of cameraj (obtained with the same procedure described above). Then, the reconstruction
error on thejth image plane is defined as:ej = qj − q̂j .

Since now the value of the distancedj is unknown, the goal of the reconstruction procedure is to estimate the 3D
target position exploiting multi-view data on several cameras and minimizing the sum of the square (image plane) errors
(reconstruction minimizing theL2 error norm), i.e.

∑m
j=1 e

⊤
j ej . Also, to take into account the different level of noise in

the measurements and the possible correlation among them, the following functionalΘ(φ) is introduced:

Θ(φ) = e
⊤We , (2)

wheree =
[

e⊤1 e⊤2 . . . e⊤m
]⊤

, andW ≥ 0 is a proper weighting matrix.
When the number of cameras is low, optimalL2 reconstruction can be solved by probing all the local minimaof a proper

eigenvalue problem [2] [8]. However, because of computational complexity issues, such method becomes impossible in
practice whenm increases.

Alternatively, an approximate solution can be computed by means of optimization methods [9], although not ensuring to
take to the optimal solution: Usually to reduce the risk of remaining stuck to local minima an initial approximate solution
quite close to the true one has to be provided.

This work is organized in two parts, that reflect the twofold contribution the paper aims at: In Secs. II and III, different
reconstruction algorithms and their iterative versions are described and compared with respect to three marker distribution
case studies and an increasing number of cameras. Then, in Sec. IV, a condition for a “good” reconstruction is discussed
and an upper bound to the reconstruction error variance is obtained, which allows to compute the number of cameras needed
to attain a chosen reconstruction performance. Finally, inSec. V some conclusions are drawn.

II. T RIANGULATION METHODS

The reconstruction error on the image planeej can be back projected on the planeΠj : The error on the target planee′j
is related toej by geometrical similarity:e′j = djej . Substituting (1) into the above equation yields:

e′j =
(

djqj − P̄j φ̂
)

=
(

qjpj,3 − P̄j
)

φ̂ , (3)

whereP̄j is the matrix formed by the first two rows ofPj , while pj,3 corresponds to the third row ofPj :

Pj =

[

P̄j
pj,3

]

.

Then, the functionalΘ computed at̂φ becomes:

Θ(φ̂) = e
′⊤W ′

e
′ = φ̂⊤ A φ̂ .

wheree′ =
[

e′1
⊤

e′2
⊤

. . . e′m
⊤

]⊤
, W ′ = DWD, D = diag(d−1

1 , d−1
2 , . . . , d−1

m ) is the diagonal matrix formed by

the inverse of the values of the distances{dj}, andA andFj are defined as follows:

A = F
⊤W ′

F,

Fj =
(

qjpj,3 − P̄j
)

, j = 1, . . . ,m ,

with F =
[

F⊤
1 F⊤

2 . . . F⊤
m

]⊤
.



A. Linear-Eigen method

The general solution̂φLE , which minimizes the functionalΘ, can be obtained as the eigenvector ofA associated to
its minimum eigenvalue. Noticeably, this is equivalent to computing the principal component associated to the minimum
singular value ofB:

B =W 1/2D
[

F⊤
1 F⊤

2 . . . F⊤
m

]⊤
,

whereW 1/2 is such thatW =W 1/2W 1/2.
Since vectors are expressed in homogeneous coordinates, the last component̂φLE(4) of the obtained solution̂φLE has

to be normalized to1: φ̂LE is then redefined aŝφLE = φ̂LE/φ̂LE(4).
The valueφ̂LE just computed usingdj = 1, ∀j, corresponds to the solution of theLinear-Eigen (LE) method [2].

B. Linear-LS method

Since typically motion capture systems are used in closed areas, the case of targets at very large distance (at limit
infinite) from the cameras is quite uncommon. Excluding the case of points at infinity, it is possible to writêφ as follows:
φ̂ =

[

φ̄⊤ 1
]⊤

, whereφ̄ =
[

x̂ ŷ ẑ
]⊤

.

The functionalΘ results:Θ̂(φ) =
[

φ̄⊤ 1
]

A

[

φ̄
1

]

, whereA =

[

Λ a
a⊤ b

]

, Λ is a3×3 matrix,a is a3×1 column

vector, andb is a scalar. By simple matrix manipulations,Θ can be rewritten as follows:
Θ = φ̄⊤Λφ̄+ a⊤φ̄+ φ̄⊤a+ b .

The above equation is a quadratic function, whose minimum can be obtained by imposing the first partial derivative to
be zero, i.e.:Λφ̄+ a = 0 , and finally,φ̄ = −Λ†a , whereΛ† is the pseudo-inverse ofΛ.

Computing the above estimatēφ with dj = 1, ∀j corresponds to the solution̂φLLS of the Linear-LS (LLS) method [2].

C. Optimal L2

If the correct values ofdj , ∀j are known, then the estimatēφ computed above corresponds to the optimal solutionφ̂opt
of the triangulation problem withL2 norm.

However, if any other information1 is not available to the algorithm, the correct values ofdj , ∀j are usually not known.

D. Algebraic method

The Algebraic method aims at estimating bothφ anddj , ∀j: From (3), it follows that:

e′j =
(

djqj − P̄j φ̂
)

=
[

−P̄j qj
]
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]

≈ 0 ,

ande′ = E
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]⊤ ≈ 0 , where
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.

Similarly to the LE case, the solution vectorφ̂AL is obtained as the eigenvector corresponding to the smallest singular
value ofE. Then, the last component̂φAL(4) of φ̂AL has to be normalized to1: φ̂AL is then redefined as followŝφAL =
φ̂AL/φ̂AL(4).

E. Iterative methods

Actually, both the Linear-Eigen and the Linear-LS methods can be applied iteratively. At each iteration the previous
solution is used to obtain estimatesd̂j , ∀j of the values ofdj , ∀j. The rationale is that by using values ofd̂j , ∀j close to
their correct values, the new solution is supposed to be close to φ̂opt. This case is namediterative Linear-Eigen (or iterative
Linear-LS, respectively) method.

Unfortunately, the iterative method (both using Linear-Eigen or Linear-LS) explained above does not correspond to a
convex problem, thus the algorithm may eventually fall in a local minimum. However, as shown next in Section III, the
results obtained with the iterative method are usually veryclose to the optimal one.

1In some applications more geometrical information about the tracked objects can be available, e.g. the area of the target.



III. C OMPARISON OF TRIANGULATION ALGORITHMS

In this section the triangulation methods reported previously are compared on three case studies:
• case I: randomly sampled points in target domainD;
• case II: points distributed close to the epipolar line connecting the optical centers of two cameras;
• case III: points much closer to one or two cameras than to the others.

The aim of case I is to simulate the methods in their common conditions of use, instead case II and III refer to some
particular, but possibly frequent, practical conditions.

The following methods are compared: the optimalL2 (L2 Opt), LE, LLS, iterative LE (2 and 10 iterations: LE2 and LE10),
iterative LSS (2 and 10 iterations: LSS2 and LSS10), and the algebraic method. Furthermore, the behavior of the methods
for different number of cameras is studied. The results are reported for the following values ofm: {2, 3, 64} cameras. The
cameras are positioned, at the same altitude (5 meter), on a circle as shown in Fig. 2. The ray of the circle is8 meter,
and the domain of targets in case I is the cube (each side is10 meter long) centered at the circle’s center. Whenm = 2
triangulation is obtained using the two cameras in red in Fig. 2. Whenm = 3 also another camera is used: That in green
in Fig. 2 in case I and II, while one among the black and the white one in case III. Finally, whenm = 64 all the cameras
are used.
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Fig. 2. 64 cameras positioned on a circle. Triangulation methods are compared using 2 (the red ones), 3 (those in red and one among the green, white
and black camera), and 64 cameras.

In each considered condition, the following results are reported: the root mean square reconstruction error (RMSE) and
the maximum reconstruction error (max) with respect to the correct target position, the root mean square reconstruction
error (RMSEOpt) and the maximum reconstruction error (maxOpt) both with respect to the optimalL2 reconstruction.

In all the considered cases the measurements are affected bya zero-mean (white) Gaussian noise of covariance diag(1, 1) pixel,
where diag(1, 1) is the2× 2 diagonal matrix with(1, 1) on the diagonal. This can be considered as an intermediate amount
of noise (for high quality motion capture systems it is a large amount of noise).

A. Case I: random points

In this case 100 points are randomly sampled (from a uniform distribution) in all the target domain. 100 reconstructions
of each point are obtained from different noisy measurements of the cameras. The results reported in Table I shows that
in this case all methods obtain quite good results: iterative methods after 2 steps practically converge to the optimalL2

solution, but LE and LLS results are quite good too. The results of the algebraic method are acceptable but worse with
respect to those of the other methods.

B. Case II: almost singular conditions

In this subsection 50 points randomly sampled along the epipole line between cameras in red in Fig. 2 are considered.
100 reconstructions of each point are obtained from different noisy measurements of the cameras. The results are reported
in Table II. This example represents a geometrical singularity condition for the triangulation problem with 2 cameras.So,
as expected, all methods cannot provide any useful solutionusing 2 cameras. Nevertheless, using 3 non aligned cameras
the results LLS (and iterative LLS) method are good, and the use of 64 cameras can improve further the results of LLS
algorithm. Instead the LE method proves to be unstable in this conditions. Since in non unstable conditions its results are
practically the same of LLS (see case I ), hereafter only the LLS method is considered. Finally, the algebraic method provides
fair results only when using 64 cameras.



TABLE I

2 cameras

Method RMSE[mm] max[mm] RMSEOpt[µm] maxOpt[µm]

L2 Opt 2.20 4.26 0 0
LE 2.21 4.15 507 916

LLS 2.21 4.15 507 916
LE2 2.20 4.26 0.687 1.81

LLS2 2.20 4.26 0.686 1.87
LE10 2.20 4.26 0.687 1.81
LLS10 2.20 4.26 0.686 1.87

Algebraic 3.60 6.43 2110 3800

3 cameras

Method RMSE[mm] max[mm] RMSEOpt[µm] maxOpt[µm]

L2 Opt 1.67 3.25 0 0
LE 2.68 4.18 1640 3010

LLS 2.68 4.18 1640 3010
LE2 1.67 3.25 1.19 2.71

LLS2 1.67 3.25 1.08 2.54
LE10 1.67 3.25 0.785 1.93
LLS10 1.67 3.25 0.691 1.88

Algebraic 226 489 226000 489000

64 cameras

Method RMSE[mm] max[mm] RMSEOpt[µm] maxOpt[µm]

L2 Opt 1.22 1.40 0 0
LE 2.21 2.58 1536 1802

LLS 2.21 2.58 1536 1802
LE2 1.22 1.40 0.958 1.45

LLS2 1.22 1.40 0.701 1.15
LE10 1.22 1.40 0.326 0.537
LLS10 1.22 1.40 0.138 0.300

Algebraic 14.6 19.6 15000 20000

C. Case III: different distances

This is an example of a potentially critical condition for the iterative methods. When the distances between cameras
and target are very different the LS solution may be far from the correct target position. Consequently, iterative LLS may
converge on a local minimum. In the 3 cameras case, 1 camera isfar from the target while 2 are close to it. As shown by
the results reported in Table III, actually the iterative LLS converged very close to the optimalL2 solution in practical all
the cases. Differently, the algebraic method is not robust to different distances between cameras and target. This result is in
analogy with a previous example provided in [4].

D. Remarks

While the LLS method provides very reliable results in all the considered (non-singular) examples, the algebraic method
is very unstable in most of the considered conditions. The LEmethod often provides results very similar to the LLS method,
which however is typically computationally more stable. The iterative LLS method successfully exploits the initial LLS
solution converging in all the considered cases very close to the optimalL2 solution. Furthermore, LLS2, the solution of
the second iteration, is often already fair. Moreover, as expected, increasing the number of cameras, the triangulation error
with respect to the correct target position decreases consequently.

Motivated by the above considerations, we suggest that the iterative LLS is a good candidate for real scenario applications.
In the following section the adopted triangulation method,iterative LLS, is assumed to practically always converge tothe
optimalL2 solution.

IV. CONDITIONS FOR ADEQUATE RECONSTRUCTION

A typical design requirement for a motion capture system is that of reconstructing targets’ positions with a certain accuracy
(usually in terms of Euclidean distance of the reconstructed point with respect to its correct position). Then, the aim of this
section is that of providing conditions for anadequate reconstruction, e.g. how many cameras have to be used to make sure
that the reconstruction error’s standard deviation is lower than a given thresholdǫ.

As shown in the previous section, optimal positioning can bepractically obtained using a fast linear triangulation method,
the iterative LLS: After a few steps, the LLS reaches the optimal solution in almost all the conditions of practical interest
in this framework. Then, hereafter the position of a point reconstructed by some cameras will be assumed to be the optimal
(in L2 norm sense) position.

Let camera measurements be affected by an additive zero meanwhite Gaussian noise of covarianceσ2
eI, and consider a

target reconstructed by a set of cameras including cameraj. Then the information about the target positionφ provided by



TABLE II

2 cameras

Method RMSE[m] max[m] RMSEOpt[m] maxOpt[m]

L2 Opt 2.91 13.2 0 0
LLS 2.91 13.2 0.70 2.93
LLS2 2.91 13.2 1.14 6.05
LLS10 2.91 13.2 1.14 6.05

Algebraic 2.32 5.17 2250 14300

3 cameras

Method RMSE[mm] max[mm] RMSEOpt[µm] maxOpt[µm]

L2 Opt 4.11 7.36 0 0
LLS 3.92 7.23 1090 1610
LLS2 4.11 7.36 2.06 5.01
LLS10 4.11 7.36 2.48 6.04

Algebraic 272 604 2.71 ·10
5 6.00 ·10

5

64 cameras

Method RMSE[mm] max[mm] RMSEOpt[µm] maxOpt[µm]

L2 Opt 1.08 1.29 0 0
LLS 2.34 2.71 1780 2140
LLS2 1.08 1.29 0.793 1.20
LLS10 1.08 1.29 0.0906 0.204

Algebraic 17.1 44.5 17000 44400

TABLE III

2 cameras

Method RMSE[mm] max[mm] RMSEOpt[µm] maxOpt[µm]

L2 Opt 2.17 5.16 0 0
LLS 2.82 5.47 1650 2820
LLS2 2.17 5.16 0.0254 0.0543
LLS10 2.17 5.16 0.0254 0.0543

Algebraic 11.3 18.2 12100 20600

3 cameras

Method RMSE[mm] max[mm] RMSEOpt[µm] maxOpt[µm]

L2 Opt 1.84 4.39 0 0
LLS 2.97 5.21 2180 3700
LLS2 1.84 4.39 0.0518 0.114
LLS10 1.84 4.39 0.0435 0.102

Algebraic 105 330 106000 330000

64 cameras

Method RMSE[mm] max[mm] RMSEOpt[µm] maxOpt[µm]

L2 Opt 0.104 0.137 0 0
LLS 2.53 3.01 2470 2930
LLS2 0.103 0.137 0.102 0.153
LLS10 0.104 0.137 0.004 0.011

Algebraic 18.9 27.9 18900 27900

cameraj can be modeled as follows:̂φj ∼ N (φ,Σj(φ)) . The varianceΣj depends onφ and on the camera characteristics
as follows:Σj = γψjψ

⊤
j + σ2

ed
2
jΨ̄jΨ̄

⊤
j , whereψj is the unit vector of directionφ − Oj , Ψ̄j is an orthonormal basis of

the planeΠj , andγ is much larger thanσ2
ed

2
j . Then, the first principal component ofΣj practically coincides withψj and

has singular valueγ. ThenΣj admits the following PCA representation:

Σj ≈
[

ψj Ψj
]

diag(γ, σ1, σ2)

[

ψ⊤
j

Ψ⊤
j

]

, (4)

where
[

ψj Ψj
]

is a unitary 3 × 3 matrix, and typicallyγ ≫ σ1 ≥ σ2 ≥ 0. Notice thatΨj = Ψ̄j only for φ
positioned on the optical axis of cameraj. Then, the target position reconstructed usingm cameras’ measurements is:
φ̂ ∼ N (φ,Σφ̂(φ)) , whereΣφ̂(φ) = inv

(

∑m
j=1 Σ

−1
j

)

. Notice thatΣφ̂(φ) depends on the pointφ at which it is evaluated.

Substituting (4) in the above equation:Σφ̂(φ) = inv

(

∑m
j=1 [ψj Ψj] inv (diag(γ, σ1, σ2))

[

ψ⊤
j

Ψ⊤
j

])

.

Sinceγ−1 ≈ 0, if φ is a properly reconstructed point (in a non-singular configuration, i.e. not all cameras and target aligned):
Σφ̂(φ) ≈ inv

(

∑m
j=1 Ψj inv (diag(σ1, σ2))Ψ⊤

j

)

.

The above equation is a very good approximation of the uncertainty in the reconstructed position of targetφ. The reader
is referred to [7] for a detailed experimental validation ofsuch approximation. Then, the goal of the motion capture system



can be formulated as follows:
√

trace(Σφ̂(φ)) < ǫ , ∀φ ∈ D , (5)

whereD is the targets’ domain. Since checking the above condition over the entire domainD can be quite laborious, an
upper bound of

√

trace(Σφ̂(φ) will be derived in the following for some configurations of interest.

Let d̄ be the maximum feasible value ofdj , for all j. The value ofd̄ is typically imposed by the room size or by the
camera’s maximum visibility distance, i.e. the maximum distance at which a target can be detected by the camera.

Considering the worst case2, σ2
e d̄

2 ≥ σ1 ≥ σ2, andΣ′
φ̂

is used instead ofΣφ̂: Σ′
φ̂
(φ) = σ2

e d̄
2
(

∑m
j=1 ΨjΨ

⊤
j

)−1

. Let

λk(Ξ) indicate thek-th eigenvalue of a generic matrixΞ. Furthermore, for each positive (or negative) definite matrix Ξ
let the eigenvalues be ordered in increasing order, i.e.λ1(Ξ) is the smallest eigenvalue ofΞ. Then trace(Σ′

φ̂
(φ)) can be

computed as follows: trace
(

Σ′
φ̂
(φ)

)

= σ2
e d̄

2
∑

k
1

λk(
∑

m
j=1

ΨjΨ⊤

j )
, where such expression has been obtained noticing

that {λk(Ξ)}k=1:3 = {1/λk(Ξ−1)}k=1:3 for a 3 × 3 positive definite matrixΞ [5]. Since
[

ψj Ψj
]

is unitary, then

ψjψ
⊤
j +ΨjΨ

⊤
j = I, and hence: trace

(

Σ′
φ̂
(φ)

)

= σ2
e d̄

2
∑

k
1

m−λk(
∑

m
j=1

ψjψ⊤

j )
. DefiningM(φ) =

∑m
j=1 ψjψ

⊤
j , then:

trace
(

Σ′
φ̂
(φ)

)

= σ2
e d̄

2
∑

k

1

m− λk (M(φ))
(6)

≤ σ2
e d̄

2 3

m− λ3 (M(φ))
. (7)

Since{ψj} are unit vectors, then
∑m
k=1 λk (M(φ)) = m.

Example 1: Let cameras be placed along a circle of rayr (similarly to Fig. 2). Cameras are equally spaced along such
circle. Without loss of generality the camera circle is assumed to be centered on the origin of the Cartesian axes. This
example aims at computing the value of trace(Σ′

φ̂
) on the originO. By construction:ψj =

φ−Oj

|φ−Oj | =
−Oj

|Oj | =
−Oj

r .

Thenλk (M(O)) = 1
r2λk

(

∑m
j=1OjO

⊤
j

)

. Sincem cameras are distributed uniformly along a circle of rayr, then the

eigenvalues of
∑m
j=1OjO

⊤
j are{mr22 , mr

2

2 , 0}, where the first two eigenvalues are associated to two orthogonal directions

on the plane containing the circle. Hence, trace
(

Σ′
φ̂
(O)

)

= σ2
e d̄

2
(

2
m + 2

m + 1
m

)

= σ2
e d̄

2 5
m . �

In the following subsections some bounds on trace(Σ′
φ̂
) (for all points inD) will be computed assuming that the cameras

are positioned as in the above example.

A. D as a small spherical domain

In this subsection the minimum possible distance of a targetfrom the cameras is set tol. Let Λ be a semi-positive definite
matrix andx be a vector, ifβ1 ≤ β2 then(Λ+ 1

β1

xx⊤)−(Λ+ 1
β2

xx⊤) ≥ 0 and thusλk(Λ+ 1
β1

xx⊤) ≥ λk(Λ+ 1
β2

xx⊤). Let

ηj = φ−Oj , thenλk

(

∑

j

ηjη
⊤

j

|ηj |2

)

≤ 1
l2 λk

(

∑

j ηjη
⊤
j

)

, and from (6): trace
(

Σ′
φ̂
(φ)

)

≤ ∑

k
σ2

e d̄
2

m− 1

l2
λk(

∑
j(φ−Oj)(φ−Oj)⊤)

. Because

of the symmetric camera configuration
∑m
j=1Oj = 0, thus:

trace
(

Σ′
φ̂
(φ)

)

≤ ∑

k
σ2

e d̄
2

m− 1

l2
λk(mφφ⊤+

∑
m
j=1

OjO⊤

j )
.

mφφ⊤ and
∑m

j=1OjO
⊤
j have the following sets of eigenvalues:{m|φ|2, 0, 0}, and (as shown in Example 1){mr22 , mr

2

2 , 0},
respectively. Finally, taking into account of bounds on theeigenvalues of a sum of matrices [5]:

trace
(

Σ′
φ̂
(φ)

)

≤ 3σ2
e d̄

2

m
(

1− r2/2+(r−l)2
l2

) . (8)

Notice that the above bound can be used only if the targets areclose enough to the origin (i.e. far enough from cameras).

B. D as a planar domain

In this subsection the domainDp is the 2D region limited by the camera circle. Nevertheless, becauseof measurement
noise,the reconstructed points are 3D points not restricted to lay on such 2D region,even if typically they are close to it.

Since{ψj} are unit vectors, then, because of the symmetry of the configuration, the maximum value ofλ3(M(φ)) with
respect toφ ∈ Dp is λ3(M(φ)) = max(λ3(M(O)), λ3(M(Oj))) , whereλ3(M(Oj)) = λ3(M(Oj′ )) ∀j′ 6= j. Notice that
whenφ = Oj thenM(φ) =

∑

j′ 6=j ψj′ψ
⊤
j′ .

2In Σ
′

φ̂
the noise level is set at its maximum value for all points inD and for all cameras, i.e. the information actually providedby each camera about

the target position is always greater or equal to that used inΣ
′

φ̂
.



ConsideringO1 = [r 0 0]⊤, then by geometric considerations the first principal component has to be aligned with the
horizontal axis, and the value of the corresponding singular value (which is equal toλ3(M(O1)) is:
λ3(M(O1) =

∑m−1
h=1

1
2 (1− cos(2πh/m)) = m/2 .

Substituting the above expression in (7), then: trace
(

Σ′
φ̂
(φ)

)

≤ σ2
e d̄

2 6
m .

C. D as a semi-spherical domain

Let Ds be the semi-sphere of rayr centered in the origin and with positivez coordinate.
From geometrical considerations (aiming at maximizing thevariance captured by the first principal component ofM(φ)),

the maximum value ofλ3(M(φ)) with respect toφ ∈ Ds is λ3(M(φ)) = max(λ3(M(O)), λ3(M([0 0 r]⊤))) .
The value of the maximum eigenvalue in correspondence ofφ on the top of the semi-sphere,φ = [0 0 r]⊤. Because

of the symmetry of the configuration the maximum principal component is aligned with the vertical axis, and the value of
its associated singular value can be computed as follows: sinceψh = [−cos(2πh/m) − sin(2πh/m) r]⊤/

√
2r , then

(sum of the squares of projections of{ψh} on the principal component vector),λ3(M([0 0 r]⊤)) =
∑m−1

h=0

(

r√
2r

)2

=

m/2 . Substituting this expression in (7), then:

trace
(

Σ′
φ̂
(φ)

)

≤ σ2
e d̄

2 6

m
. (9)

Notice that this result can be easily extended also to the spherical case.
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Fig. 3. Maximum value of the standard deviation of the reconstructed error varying the number of cameras placed in circle(Fig. 2). Maximum standard
deviation value (red) and its upper bound (blue) computed asin (9).

D. Remarks

Interestingly, the computed bounds decrease with1/m (similarly to the common variance of a mean estimate). Thus,once
that an upper bound for trace(Σ′

φ̂
(φ)), ∀φ ∈ D, has been obtained, then it is possible to compute through (5) an upper

bound to the minimum number of camerasm̂ necessary to have the error standard deviation lower thanǫ. Since (8) can be
applied only when the targets are quite close to the origin, (9) practically results to be more useful.

Fig. 3 compares the bound obtained through (9) with the correct values of the error’s standard deviation when cameras
are disposed on a circle of ray8 m (as in Fig. 2) and the visibility range of each camera is 10 m.As shown in Fig. 3,
both the real variance and the computed upper bound decreaseapproximatively asO(1/m). Since the constant factors in
theO(1/m) notation are different for the upper bound and the correct variance, then the discrepancy between the computed
upper boundm̂ on the number of necessary cameras and the number of cameras really needed for a certain error levelǫ
increases asǫ becomes smaller.

V. CONCLUSIONS

In the first part of this paper some linear algorithms for geometric triangulation (minimizing theL2 norm) have been
resumed and compared on three cases of interest. Differently from the other linear methods, the iterative LLS method
has provided reliable results in all the considered conditions: Actually the solutions obtained (in non-singular geometric
conditions) after few steps of the iterative LLS were very close to the correct targets positions.

In the second part of the paper a Gaussian approximation of the reconstruction error has been introduced. The standard
deviation of the reconstruction error on a pointφ has been explicitly expressed exploiting such approximation. Theoretical
upper bounds on the reconstruction error variance on all thetarget domain have been derived in a possible configuration
of the motion capture systems. Finally, the upper bound to the reconstruction error allows to obtain an upper bound on the
number of cameras necessary to reconstruct the targets on all the domain with a user defined accuracy.
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